1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
//! # Reed Solomon codes
//!
//! Reed solomon codes are error correcting codes that create $n$ shards of data and allow $k$
//! shards where $k \leq n$ to recover the underlying data. Reed solomon codes have wide industrial
//! use -- they are used in QR codes, CDs, Hard disks, and even large systems like amazon's S3.
//!
//! Reed solomon codes work by doing arithmetic over finite fields. A reed solomon code, like a
//! (255, 223) code has 223 data bits and 32 parity bits. The 32 parity bits can be used to detect
//! up to 32 errors in the block, and correct up to 16 errors.
//!
//! Reed solomon codes encode the data in the block and the parity bits using lagrange
//! interpolation.
//!
//! Take an example where there are 3 points, (1, 2), (3, 2) and (4, -1) which define a polynomial
//! of degree 2 (since $n$ points uniquely define a polynomial with a degree of $n - 1$.
//! There are 3 lagrange polynomials, one for each point. For the first point, (1, 2), the lagrange
//! polynomial is equal to 1 at the x coordinate (1), and 0 at all the other y coordinates of the
//! remaining points, (3, 4). The second point is (3, 2), so the lagrange polynomial for that point
//! is (3, 1), while the other points are (1, 0) and (4, 0). Finally, the last point is (4, 1),
//! with the other points being (1, 0) and (3, 0).
//!
//! We then interpolate the first polynomial: Since the polynomial has points (1, 1), (3, 0) and
//! (4, 0), it is defined as $l_1(x) = (x - 3)(x - 4)$. After subbing in 1 for $x$, the x value is
//! 6 on the right hand side, and the left hand side has to be 1, so the final polynomial is:
//! $l_1(x) = \frac{1}{6}(x - 3)(x - 4)$.
//! After doing the same for the other points, we multiply each polynomial by the original point's
//! y coordinate, so (2, 2, -1), and then sum the polynomials together to get the unique polynomial.
//! Finally, we can take as many other points on the curve as required and then pack them with the
//! original data. Thus, we take as many bits as required to allow for $k$ to reconstruct the
//! polynomial, so $k$ has to be the number of bits + 1.
// Constants for Reed-Solomon error correction
//
// Reed-Solomon can correct ECC_SIZE known erasures and ECC_SIZE/2 unknown
// erasures. DATA_SIZE is arbitrary, however the total size is limited to
// 255 bytes in a GF(256) field.
//
use gf256::gf256;
use std::fmt;
pub const DATA_SIZE: usize = 223;
pub const ECC_SIZE: usize = 32;
pub const BLOCK_SIZE: usize = DATA_SIZE + ECC_SIZE;
// The generator polynomial in Reed-Solomon is a polynomial with roots (f(x) = 0)
// at fixed points (g^i) in the finite-field.
//
// ECC_SIZE
// G(x) = ∏ (x - g^i)
// i
//
// Note that G(g^i) = 0 when i < ECC_SIZE, and that this holds for any
// polynomial * G(x). And we can make a message polynomial a multiple of G(x)
// by appending the remainder, message % G(x), much like CRC.
//
// Thanks to Rust's const evaluation, we can, and do, evaluate this at
// compile time. However, this has a tendency to hit the limit of
// const_eval_limit for large values of ECC_SIZE.
//
// The only current workaround for this is nightly + #![feature(const_eval_limit="0")].
//
// See:
// https://github.com/rust-lang/rust/issues/67217
//
pub const GENERATOR_POLY: [gf256; ECC_SIZE + 1] = {
let mut g = [gf256::new(0); ECC_SIZE + 1];
g[ECC_SIZE] = gf256::new(1);
// find G(x)
//
// ECC_SIZE
// G(x) = ∏ (x - g^i)
// i
//
let mut i = 0usize;
while i < ECC_SIZE {
// x - g^i
let root = [gf256::new(1), gf256::GENERATOR.naive_pow(i as u8)];
// G(x)*(x - g^i)
let mut product = [gf256::new(0); ECC_SIZE + 1];
let mut j = 0usize;
while j < i + 1 {
let mut k = 0usize;
while k < root.len() {
product[product.len() - 1 - (j + k)] = product[product.len() - 1 - (j + k)]
.naive_add(g[g.len() - 1 - j].naive_mul(root[root.len() - 1 - k]));
k += 1;
}
j += 1;
}
g = product;
i += 1;
}
g
};
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum Error {
TooManyErrors,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Error::TooManyErrors => write!(f, "Too many errors to correct"),
}
}
}
fn poly_eval(f: &[gf256], x: gf256) -> gf256 {
let mut y = gf256::new(0);
for c in f {
y = y * x + c;
}
y
}
fn poly_scale(f: &mut [gf256], c: gf256) {
for i in 0..f.len() {
f[i] *= c;
}
}
fn poly_add(f: &mut [gf256], g: &[gf256]) {
debug_assert!(f.len() >= g.len());
// note g.len() may be <= f.len()!
for i in 0..f.len() {
f[f.len() - 1 - i] += g[g.len() - 1 - i];
}
}
fn poly_mul(f: &mut [gf256], g: &[gf256]) {
debug_assert!(f[..g.len() - 1].iter().all(|x| *x == gf256::new(0)));
// This is in-place, at the cost of being a bit confusing,
// note that we only write to i+j, and i+j is always >= i
//
// What makes this confusing is that f and g are both big-endian
// polynomials, reverse order from what you would expect. And in
// order to leverage the i+j non-overlap, we need to write to
// f in reverse-reverse order.
//
for i in (0..f.len() - g.len() + 1).rev() {
let fi = f[f.len() - 1 - i];
f[f.len() - 1 - i] = gf256::new(0);
for j in 0..g.len() {
f[f.len() - 1 - (i + j)] += fi * g[g.len() - 1 - j];
}
}
}
fn poly_divrem(f: &mut [gf256], g: &[gf256]) {
debug_assert!(f.len() >= g.len());
// find leading coeff to normalize g, note you could avoid
// this if g is already normalized
let leading_coeff = g[0];
for i in 0..(f.len() - g.len() + 1) {
if f[i] != gf256::new(0) {
f[i] /= leading_coeff;
for j in 1..g.len() {
f[i + j] -= f[i] * g[j];
}
}
}
}
// Encode using Reed-Solomon error correction
//
// Much like in CRC, we want to make the message a multiple of G(x),
// our generator polynomial. We can do this by appending the remainder
// of our message after division by G(x).
//
// ``` text
// c(x) = m(x) - (m(x) % G(x))
// ```
//
// Note we expect the message to only take up the first message.len()-ECC_SIZE
// bytes, but this can be smaller than BLOCK_SIZE
//
pub fn encode(message: &mut [u8]) {
assert!(message.len() <= BLOCK_SIZE);
assert!(message.len() >= ECC_SIZE);
let data_len = message.len() - ECC_SIZE;
// create copy for polynomial division
//
// note if message is < DATA_SIZE we just treat it as a smaller polynomial,
// this is equivalent to prepending zeros
//
let mut divrem = message.to_vec();
divrem[data_len..].fill(0);
// divide by our generator polynomial
poly_divrem(
unsafe { gf256::slice_from_slice_mut_unchecked(&mut divrem) },
&GENERATOR_POLY,
);
// return message + remainder, this new message is a polynomial
// perfectly divisable by our generator polynomial
message[data_len..].copy_from_slice(&divrem[data_len..]);
}
fn find_syndromes(f: &[gf256]) -> Vec<gf256> {
let mut S = vec![];
for i in 0..ECC_SIZE {
S.push(poly_eval(f, gf256::GENERATOR.pow(u8::try_from(i).unwrap())));
}
S
}
fn find_forney_syndromes(codeword: &[gf256], S: &[gf256], erasures: &[usize]) -> Vec<gf256> {
let mut S = S.to_vec();
for j in erasures {
let Xj = gf256::GENERATOR.pow(u8::try_from(codeword.len() - 1 - j).unwrap());
for i in 0..S.len() - 1 {
S[i] = S[i + 1] - S[i] * Xj;
}
}
// trim unnecessary syndromes
S.drain(S.len() - erasures.len()..);
S
}
fn find_erasure_locator(codeword: &[gf256], erasures: &[usize]) -> Vec<gf256> {
let mut Λ = vec![gf256::new(0); erasures.len() + 1];
let Λ_len = Λ.len();
Λ[Λ_len - 1] = gf256::new(1);
for j in erasures {
poly_mul(
&mut Λ,
&[
-gf256::GENERATOR.pow(u8::try_from(codeword.len() - 1 - j).unwrap()),
gf256::new(1),
],
);
}
Λ
}
fn find_error_locator(S: &[gf256]) -> Vec<gf256> {
// the current estimate for the error locator polynomial
let mut Λ = vec![gf256::new(0); S.len() + 1];
let Λ_len = Λ.len();
Λ[Λ_len - 1] = gf256::new(1);
let mut prev_Λ = Λ.clone();
let mut delta_Λ = Λ.clone();
// the current estimate for the number of errors
let mut v = 0;
for i in 0..S.len() {
let mut delta = S[i];
for j in 1..v + 1 {
delta += Λ[Λ.len() - 1 - j] * S[i - j];
}
prev_Λ.rotate_left(1);
if delta != gf256::new(0) {
if 2 * v <= i {
core::mem::swap(&mut Λ, &mut prev_Λ);
poly_scale(&mut Λ, delta);
poly_scale(&mut prev_Λ, delta.recip());
v = i + 1 - v;
}
delta_Λ.copy_from_slice(&prev_Λ);
poly_scale(&mut delta_Λ, delta);
poly_add(&mut Λ, &delta_Λ);
}
}
// trim leading zeros
let zeros = Λ.iter().take_while(|x| **x == gf256::new(0)).count();
Λ.drain(0..zeros);
Λ
}
fn find_error_locations(codeword: &[gf256], Λ: &[gf256]) -> Vec<usize> {
let mut error_locations = vec![];
for j in 0..codeword.len() {
let Xj = gf256::GENERATOR.pow(u8::try_from(codeword.len() - 1 - j).unwrap());
let zero = poly_eval(&Λ, Xj.recip());
if zero == gf256::new(0) {
// found an error location!
error_locations.push(j);
}
}
error_locations
}
fn find_error_magnitudes(
codeword: &[gf256],
S: &[gf256],
Λ: &[gf256],
error_locations: &[usize],
) -> Vec<gf256> {
// find the erasure evaluator polynomial
//
// Ω(x) = S(x)*Λ(x) mod x^2v
//
let mut Ω = vec![gf256::new(0); S.len() + Λ.len() - 1];
let Ω_len = Ω.len();
Ω[Ω_len - S.len()..].copy_from_slice(&S);
Ω[Ω_len - S.len()..].reverse();
poly_mul(&mut Ω, &Λ);
Ω.drain(..Ω.len() - S.len());
// find the formal derivative of Λ
//
// Λ'(x) = Σ i*Λi*x^(i-1)
// i=1
//
let mut Λ_prime = vec![gf256::new(0); Λ.len() - 1];
for i in 1..Λ.len() {
let mut sum = gf256::new(0);
for _ in 0..i {
sum += Λ[Λ.len() - 1 - i];
}
let Λ_prime_len = Λ_prime.len();
Λ_prime[Λ_prime_len - 1 - (i - 1)] = sum;
}
// find the error magnitudes
//
// Xj*Ω(Xj^-1)
// Yj = - -----------
// Λ'(Xj^-1)
//
// we need to be careful to avoid a divide-by-zero here, this can happen
// in some cases (provided with incorrect erasures?)
//
let mut error_magnitudes = vec![];
for j in error_locations {
let Xj = gf256::GENERATOR.pow(u8::try_from(codeword.len() - 1 - j).unwrap());
let Yj = (-Xj * poly_eval(&Ω, Xj.recip()))
.checked_div(poly_eval(&Λ_prime, Xj.recip()))
.unwrap_or(gf256::new(0));
error_magnitudes.push(Yj);
}
error_magnitudes
}
pub fn is_correct(codeword: &[u8]) -> bool {
let codeword = unsafe { gf256::slice_from_slice_unchecked(codeword) };
// find syndromes, syndromes of all zero means there are no errors
let syndromes = find_syndromes(codeword);
syndromes.iter().all(|s| *s == gf256::new(0))
}
pub fn correct_erasures(codeword: &mut [u8], erasures: &[usize]) -> Result<usize, Error> {
let codeword = unsafe { gf256::slice_from_slice_mut_unchecked(codeword) };
// too many erasures?
if erasures.len() > ECC_SIZE {
return Err(Error::TooManyErrors);
}
// find syndromes, syndromes of all zero means there are no errors
let S = find_syndromes(codeword);
if S.iter().all(|s| *s == gf256::new(0)) {
return Ok(0);
}
// find erasure locator polynomial
let Λ = find_erasure_locator(codeword, &erasures);
// find erasure magnitudes using Forney's algorithm
let erasure_magnitudes = find_error_magnitudes(codeword, &S, &Λ, &erasures);
// correct the errors
for (&Xj, Yj) in erasures.iter().zip(erasure_magnitudes) {
codeword[Xj] += Yj;
}
// re-find the syndromes to check if we were able to find all errors
let S = find_syndromes(codeword);
if !S.iter().all(|s| *s == gf256::new(0)) {
return Err(Error::TooManyErrors);
}
Ok(erasures.len())
}
pub fn correct_errors(codeword: &mut [u8]) -> Result<usize, Error> {
let codeword = unsafe { gf256::slice_from_slice_mut_unchecked(codeword) };
// find syndromes, syndromes of all zero means there are no errors
let S = find_syndromes(codeword);
if S.iter().all(|s| *s == gf256::new(0)) {
return Ok(0);
}
// find error locator polynomial
let Λ = find_error_locator(&S);
// too many errors?
let error_count = Λ.len() - 1;
if error_count * 2 > ECC_SIZE {
return Err(Error::TooManyErrors);
}
// find error locations
let error_locations = find_error_locations(codeword, &Λ);
// find erasure magnitude using Forney's algorithm
let error_magnitudes = find_error_magnitudes(codeword, &S, &Λ, &error_locations);
// correct the errors
for (&Xj, Yj) in error_locations.iter().zip(error_magnitudes) {
codeword[Xj] += Yj;
}
// re-find the syndromes to check if we were able to find all errors
let S = find_syndromes(codeword);
if !S.iter().all(|s| *s == gf256::new(0)) {
return Err(Error::TooManyErrors);
}
Ok(error_locations.len())
}
pub fn correct(codeword: &mut [u8], erasures: &[usize]) -> Result<usize, Error> {
let codeword = unsafe { gf256::slice_from_slice_mut_unchecked(codeword) };
// too many erasures?
if erasures.len() > ECC_SIZE {
return Err(Error::TooManyErrors);
}
// find syndromes, syndromes of all zero means there are no errors
let S = find_syndromes(codeword);
if S.iter().all(|s| *s == gf256::new(0)) {
return Ok(0);
}
// find Forney syndromes, hiding known erasures from the syndromes
let forney_S = find_forney_syndromes(codeword, &S, &erasures);
// find error locator polynomial
let Λ = find_error_locator(&forney_S);
// too many errors/erasures?
let error_count = Λ.len() - 1;
let erasure_count = erasures.len();
if error_count * 2 + erasure_count > ECC_SIZE {
return Err(Error::TooManyErrors);
}
// find all error locations
let mut error_locations = find_error_locations(codeword, &Λ);
error_locations.extend_from_slice(&erasures);
// re-find error locator polynomial, this time including both
// errors and erasures
let Λ = find_erasure_locator(codeword, &error_locations);
// find erasure magnitude using Forney's algorithm
let error_magnitudes = find_error_magnitudes(codeword, &S, &Λ, &error_locations);
// correct the errors
for (&Xj, Yj) in error_locations.iter().zip(error_magnitudes) {
codeword[Xj] += Yj;
}
// re-find the syndromes to check if we were able to find all errors
let S = find_syndromes(codeword);
if !S.iter().all(|s| *s == gf256::new(0)) {
return Err(Error::TooManyErrors);
}
Ok(error_locations.len())
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn reed_solomon() {
let mut data = (0..255).collect::<Vec<u8>>();
encode(&mut data);
assert!(is_correct(&data));
// correct up to k known erasures
for i in 0..(255 - 223) {
data[0..i].fill(b'x');
let res = correct_erasures(&mut data, &(0..i).collect::<Vec<_>>());
assert_eq!(res.ok(), Some(i));
assert_eq!(&data[0..223], &(0..223).collect::<Vec<u8>>());
}
// correct up to k/2 unknown errors
for i in 0..(255 - 223) / 2 {
data[0..i].fill(b'x');
let res = correct_errors(&mut data);
assert_eq!(res.ok(), Some(i));
assert_eq!(&data[0..223], &(0..223).collect::<Vec<u8>>());
}
}
#[test]
fn reed_solomon_any() {
let mut data = (0..255).collect::<Vec<u8>>();
encode(&mut data);
// try any single error
for i in 0..255 {
data[i] = b'\xff';
let res = correct_errors(&mut data);
assert_eq!(res.ok(), Some(1));
assert_eq!(&data[0..223], &(0..223).collect::<Vec<u8>>());
}
}
#[test]
fn reed_solomon_burst() {
let mut data = (0..255).collect::<Vec<u8>>();
encode(&mut data);
// try any burst of k/2 errors
for i in 0..255 - ((255 - 223) / 2) {
data[i..i + ((255 - 223) / 2)].fill(b'\xff');
let res = correct_errors(&mut data);
assert_eq!(res.ok(), Some((255 - 223) / 2));
assert_eq!(&data[0..223], &(0..223).collect::<Vec<u8>>());
}
}
// try a shortened message
#[test]
fn reed_solomon_shortened() {
let mut data = (0..40).collect::<Vec<u8>>();
encode(&mut data);
assert!(is_correct(&data));
// correct up to k known erasures
for i in 0..(40 - 8) {
data[0..i].fill(b'x');
let res = correct_erasures(&mut data, &(0..i).collect::<Vec<_>>());
assert_eq!(res.ok(), Some(i));
assert_eq!(&data[0..8], &(0..8).collect::<Vec<u8>>());
}
// correct up to k/2 unknown errors
for i in 0..(40 - 8) / 2 {
data[0..i].fill(b'x');
let res = correct_errors(&mut data);
assert_eq!(res.ok(), Some(i));
assert_eq!(&data[0..8], &(0..8).collect::<Vec<u8>>());
}
}
}